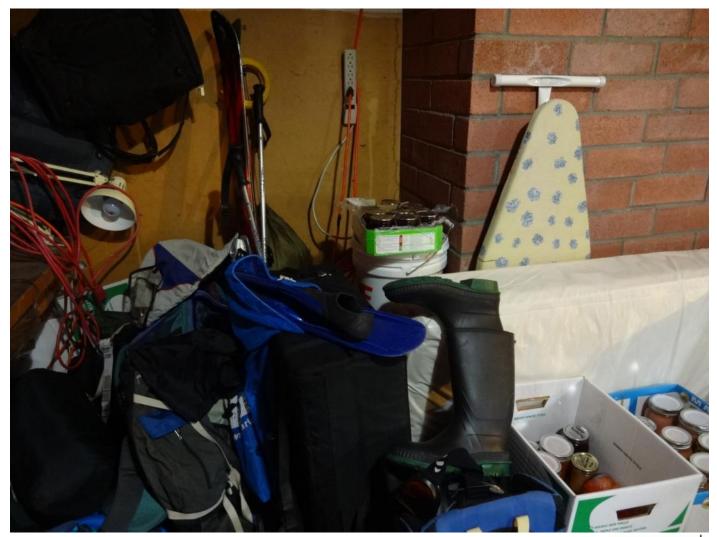
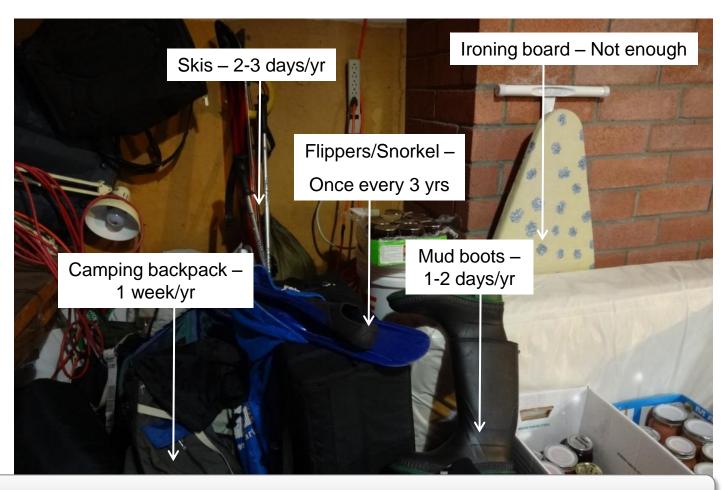


Energy Storage Valuation Tool Draft Results

Investigation of Cost-Effectiveness Potential for Select CPUC Inputs and Storage Use Cases in 2015 and 2020


Ben Kaun & Stella Chen

EPRI Energy Storage Program

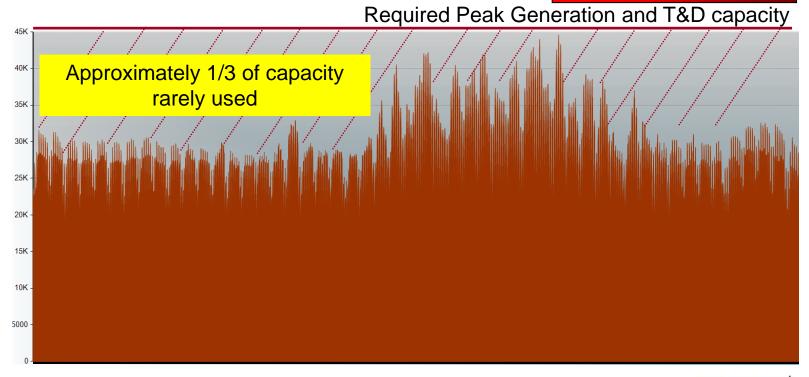

CPUC Storage OIR Workshop (R.10-12-007)

3-25-13

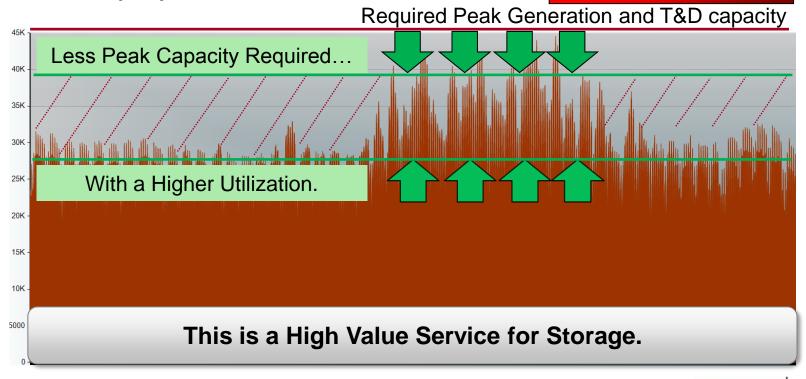
My Garage

My Garage – An Asset Utilization Case Study

My garage is filled with expensive, underutilized assets.


New Industries are Emerging to Address Low Asset Utilization

- Underutilized assets leave a lot of money on the table
- Improved communication and information has lowered transaction costs and enabled new markets


Peaky Loads Cause Utilization Issues for Electric Systems

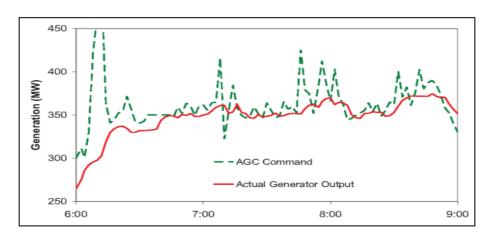
- Not just generation, but the entire T&D delivery system
- Storage could shift load from off-peak to on-peak load periods to avoid additional peak generation and T&D delivery system

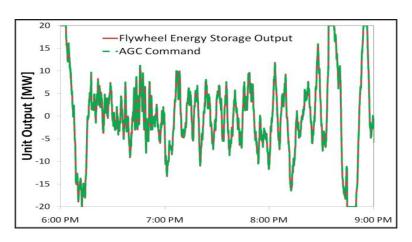
Energy Storage Can Help

- Not just generation, but the entire T&D delivery system
- Storage could shift load from off-peak to on-peak load periods to avoid additional peak generation and T&D delivery system

The Bottle Opener – An Elegant Tool

The Bottle Opener - Alternatives exist, but they are less well-suited



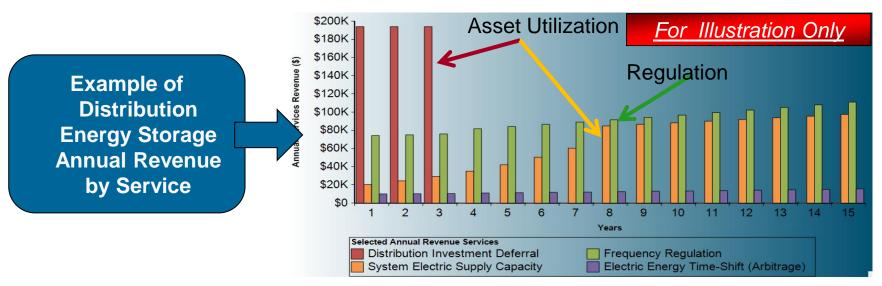


Other options are awkward and may damage the tool itself.

Frequency Regulation – A niche, challenging service for conventional grid assets

Slow Ramping of Conventional Generator

Flywheel / Battery Energy
Storage Example


Sources Kirby, B. "Ancillary Services: Technical and Commercial Insights." Wartsilla, July, 2007. pg. 13

- Fossil generator has slower response and ramp than required, and has opportunity cost of lost energy sales
- Storage can provide not only its generating capacity, but also its load to balance the system frequency
- FERC755 (Regulation Pay-for-performance) is planned for implementation in 2013 and may increase current CAISO Regulation prices when implemented

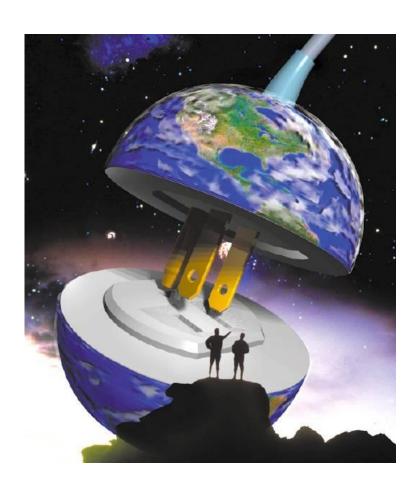
This is a High Value Service for Storage.

Storage value lies where it has a strong competitive advantage vs. conventional assets

- Use charging and discharging to simultaneously address both under (off-peak) and over-utilization (peak) of grid assets (T&D deferral & System capacity)
- Create value for storage charging, speed, and accuracy (Regulation)

Value for energy time-shift (arbitrage) is comparatively low

Today's Proposed Agenda


- Introduction to EPRI
- Background
- Analytical Process
- Discussion Break
- Model
- Input Discussion Preface
- Performed Use Case Inputs and Results
 - #1: Bulk Storage (Peaker Substitution)
 - #2: Ancillary Services (Regulation) only
- Discussion Break / Lunch
- Performed Use Case Inputs and Results
 - #3: Distributed Storage sited at Utility Substation
- Conclusions & Next Steps
- Discussion

EPRI Introduction

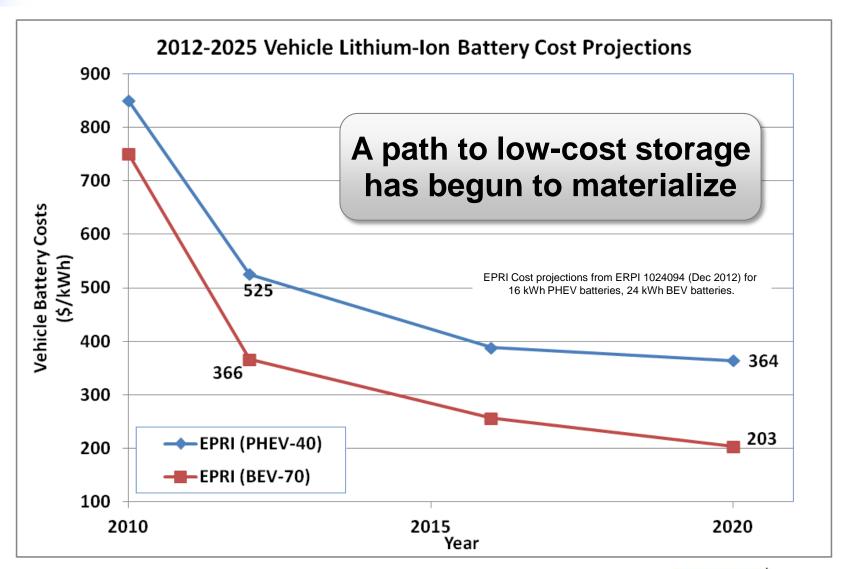
The Electric Power Research Institute (EPRI)

- Independent, non-profit,
 collaborative research institute,
 with full spectrum industry
 coverage
 - Nuclear
 - Generation
 - Power Delivery & Utilization
 - Environment & Renewables
- Major offices in Palo Alto, CA;
 Charlotte, NC; and Knoxville, TN

Technically informing regulatory / policy-makers fits within EPRI's mission

EPRI Energy Storage Program Mission

- Facilitate the development and implementation of storage options for the grid.
 - Understanding storage technologies
 - Identifying and calculating the impacts and value of storage
 - Specification and testing of storage products
 - Implementation and deployment of storage systems



Storage costs are falling with manufacturing investment

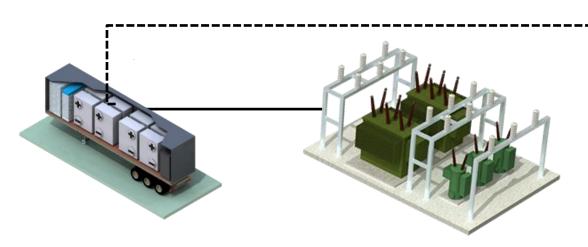
Creating a Complete Storage Product

Storage Technologies

- Define duty cycle and expectations for life and efficiency
- Characterize performance in different regimes

Power Conditioning System

- Define critical functions and performance levels
- Test capabilities to understand optimal performance


Product Integration

- Guidelines for integration of components to ensure proper performance
- Test and evaluate product as a whole

Acquiring complete, working systems has been the most challenging part of energy storage efforts to date

Grid Deployment and Integration

- Installation, operations, and disposal best practices
- Siting and permitting issues
- Safety and emergency protocols

Grid Integration

- Physical interconnection and protection protocols
- Methods for understanding the effects on the distribution system

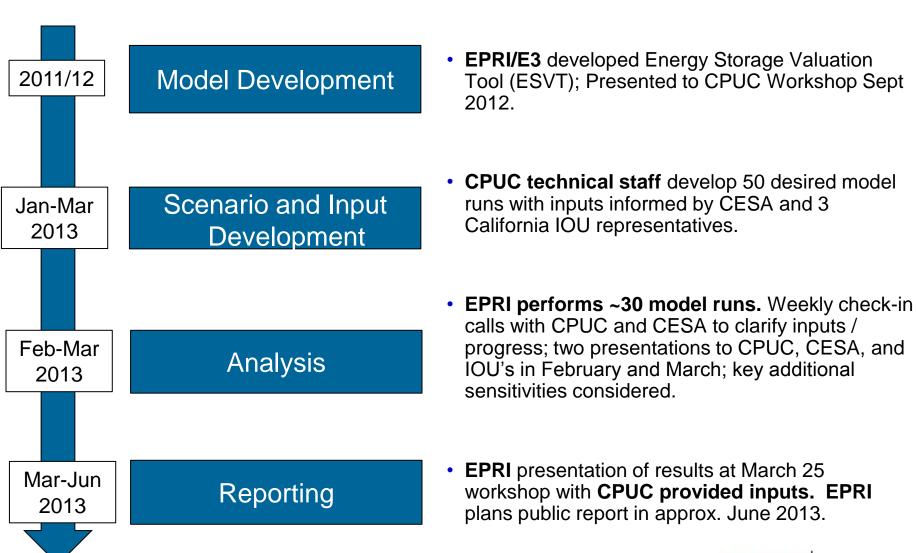
Control and Dispatch

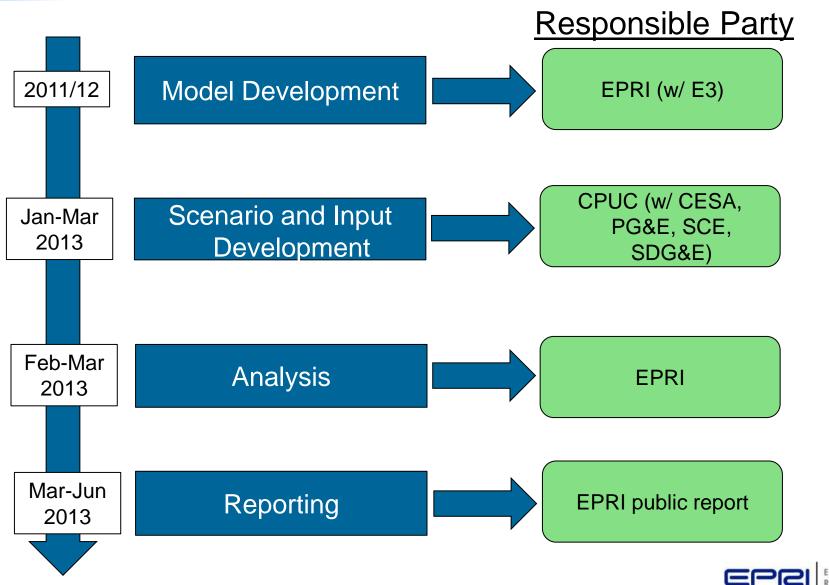
- Communication and control protocol
- SGIP and cybersecurity
- Developing optimal dispatch algorithms

Interconnection of storage to the grid is still relatively poorly understood

Focus for Today's Presentation

- There are many areas of ongoing research to enable gridready energy storage
- Today we are discussing one part: storage value analysis (under specific assumptions)





Background / Analytical Process

Overview of this Analytical Process

Overview of Process

Overview of EPRI Storage Cost-Effectiveness Methodology

Step 1a: Grid Problem / Solution Concepts Define quantifiable services storage can provide **Step 1b: Grid Service Requirements** Understand "first-order" **Step 2: Feasible Use Cases** cost-effectiveness of quantifiable benefits Understand storage **Step 3: Grid Impacts and Incidental Benefits** impact on electric system/environment Investigate impact of **Step 4: Energy Storage Business Cases** policies, business models, etc.

EPRI Storage Cost-Effectiveness Methodology

Step 1a: Grid Problem / Solution Concepts

Step 1b: Grid Service Requirements

Define quantifiable services storage can provide

Step 2: Feasible Use Cases

Understand "first-order" cost-effectiveness of quantifiable benefits

Step 3: Grid Impacts and Incidental Benefits

Not Included in Today's Analysis

Step 4: Energy Storage Business Cases

Understand storage impact on electric system/environment

vestigate impact of policies, business models, etc.

EPRI Storage Cost-Effectiveness Methodology

Step 1a: Grid Problem / Solution Concepts

Step 1b: Grid Service Requirements

Define quantifiable services storage can provide

Step 2: Feasible Use Cases

Focus of this Analysis quantifiable benefits

Step 3: Grid Impacts and Incidental Benefits

Not Included in Today's Analysis

Step 4: Energy Storage Business Cases

Understand storage impact on electric system/environment

vestigate impact of policies, business models, etc.

Overview of Step 2: Feasible Use Cases

- Simulate energy storage use case operation to address multiple grid services with quantifiable technical requirements and benefits
 - Prioritize serving long-term commitments (e.g. multi-year asset deferral over a day-ahead market opportunity)
 - Constrain operation by storage technical limitations
 - Co-optimize dispatch in the markets to maximize benefits
- Total Resource Cost (TRC) test approach focus on aggregate ("stacked") value, ignore stakeholders & transaction costs
 - Ignore bulk system and environmental impacts
 - Ignore policy incentives and monetization restrictions

Understand which use case assumptions (technology, site, etc.) may make storage cost-effective, and which inputs are important.

CPUC Use Cases

Use Cases	Categories		
Transmission-Connected Energy Storage	Bulk Storage System		
	Ancillary Services		
	On-Site Generation Storage		
	On-Site Variable Energy Resource Storage		
Distribution-Level Energy Storage	Distributed Peaker		
	Distributed Storage Sited at Utility Substation		
	Community Energy Storage		
Demand-Side (Customer-Sited) Energy Storage	Customer Bill Management		
	Customer Bill Management w/ Market		
	Participation		
	Behind the Meter Utility Controlled		
	Permanent Load Shifting		
	EV Charging		

CPUC Use Cases Investigated in the Analysis

Use Cases	Categories		
Transmission-Connected Energy Storage	Bulk Storage System (aka Peaker Subsitution)	N	
	Ancillary Services		
	On-Site Generation Storage		
	On-Site Variable Energy Resource Storage		
Distribution-Level Energy Storage	Distributed Peaker		
	Distributed Storage Sited at Utility Substation		
	Community Energy Storage		
Demand-Side (Customer-Sited) Energy Storage	Customer Bill Management		
	Customer Bill Management w/ Market		
	Participation		
	Behind the Meter Utility Controlled		
	Permanent Load Shifting		
	EV Charging		

Focus limited due to project resource constraints

Use Cases Defined by Quantifiable Grid Services Addressed

Category	Quantifiable Grid Services	CPUC Use Cases Incl. in Analysis		
		Bulk-"Peaker Sub"	Ancillary Services	Dist. Sub. Storage
Energy	Electric Supply Capacity	X		X
	Electric Energy Time-Shift	X		X
A/S	Frequency Regulation	X	X	X
	Spinning Reserve	Χ		X
	Non-Spinning Reserve	X		X
Transmission	Transmission Upgrade Deferral			
	Transmission Voltage Support			
Distribution	Distribution Upgrade Deferral			X
	Distribution Voltage Support			
Customer	Power Quality			
	Power Reliability			
	Retail Demand Charge Mgmt			
	Retail Energy Time-Shift			

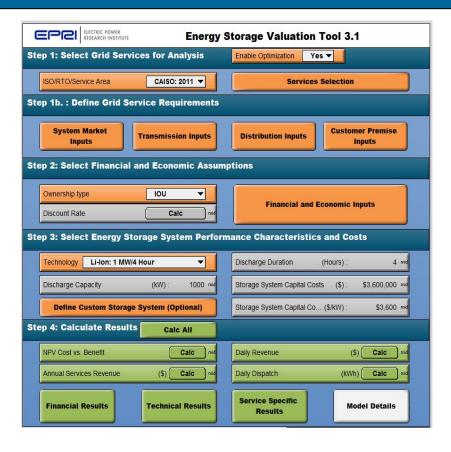
Other services and benefits may exist -

but they may be indirect or difficult to quantify

Discussion Break

Energy Storage Valuation Tool Model

What is the Energy Storage Valuation Tool (ESVT)?


Transparent, user-friendly, CBA tool to assess and communicate energy storage cost-effectiveness in different use cases

- Customizable storage project lifecycle financial analysis
- Includes pre-loaded defaults for energy storage service requirements, prioritization, values, storage technologies
- Simulates use case cost-effectiveness with Total Resource Cost (TRC) approach (stacks benefits across stakeholders)
- Multi-stakeholder services/benefits: Generation, Transmission, Distribution, Customer
- Transparent model approach with Analytica™ software model / input transparency through influence diagrams

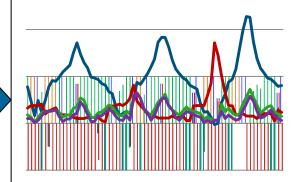
What is the Energy Storage Valuation Tool (ESVT)?

Transparent, user-friendly, CBA tool to assess and communicate energy storage cost-effectiveness in different use cases

Illustration of ESVT Operation

INPUTS

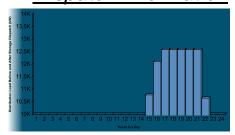
NPV Cost / Benefit

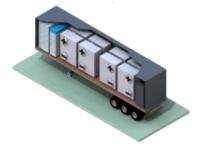

Detailed Financials

Cost

Prices / Loads

Storage Priority / Bid / Dispatch


Financial Assumptions



Storage Cost / Performance

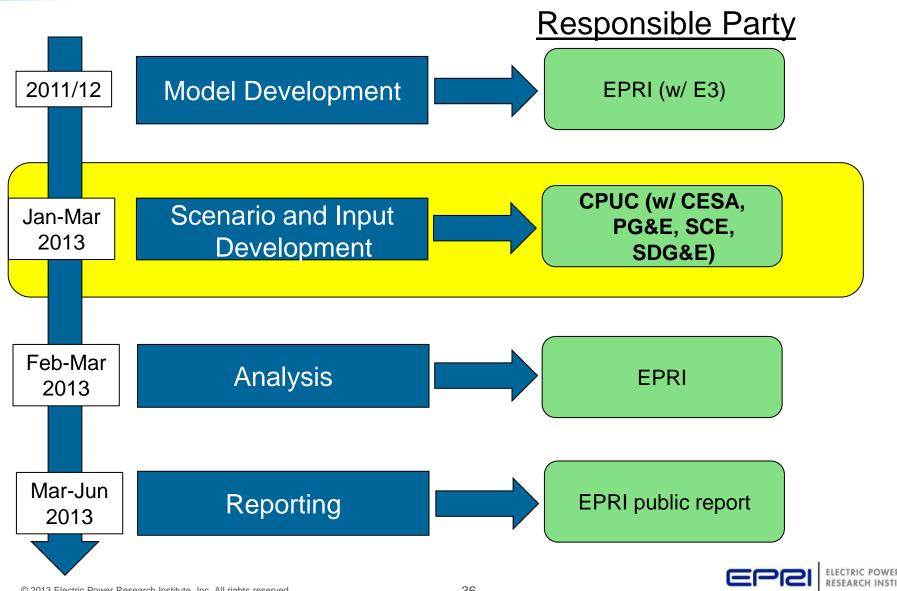
Dispatch Information

Benefit

Strengths and Current Limitations of ESVT

Strengths

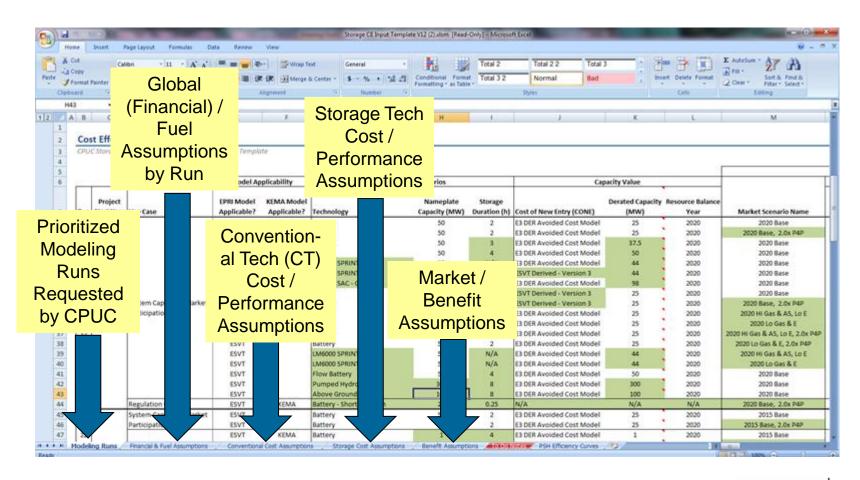
- Quick to setup and run analyses dozens of input parameters, not hundreds
- Simulates storage optimal dispatch provides insights into cost-effective use cases and relative importance of inputs
- Designed specifically to incorporate storage cost / performance parameters


Limitations

- No system price or generators impacts measured does not simulate the effects of different storage deployment levels
- No consideration of environmental / GHG impacts

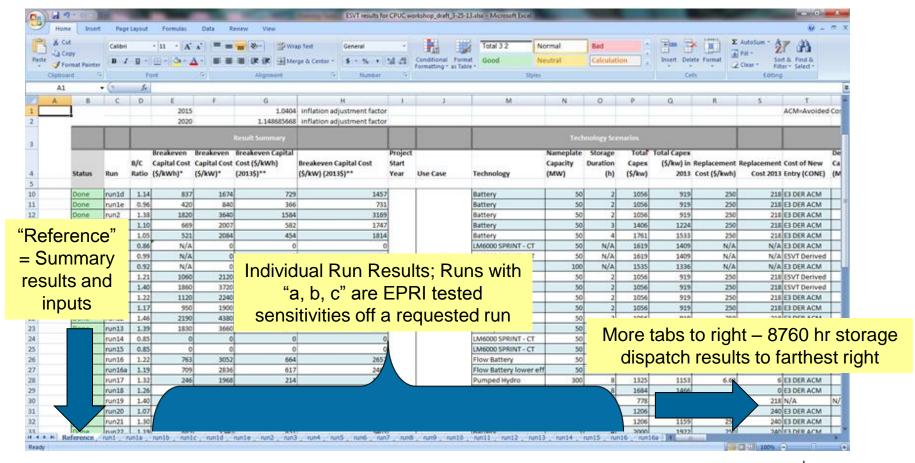
Discussion of Inputs to CPUC Analysis

Review of Analysis Inputs Process



Review of Analysis Inputs Process

- December 2012 Discussion of Use Cases for Initial Focus
 - Bulk Peaker Substitution, A/S only
 - Distribution Substation-sited
- Jan-Feb 2013 CPUC request of 50 runs (prioritized)
- Jan-Mar 2013 Weekly input clarification meetings with CPUC and 2 preliminary analysis results with stakeholder group
- March 2013 Approximately 30 runs performed (time/budget constraints) with selected additional sensitivities


Overview of Input Worksheet provided by CPUC

File: "Storage CE Input Template V12"

Overview of Results Worksheet provided by EPRI

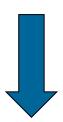
File: "ESVT Results for CPUC workshop_draft_3-25-13"

Use Case #1: Bulk Storage (Peaker Substitution) Inputs and Results

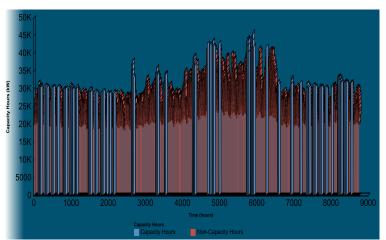
Reminder – 3 CPUC Use Cases

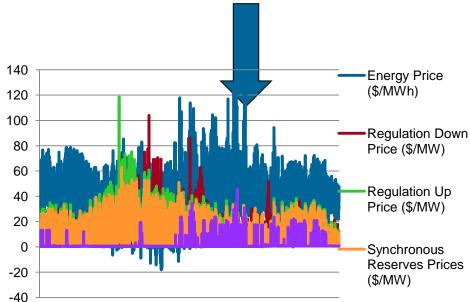
Category	Quantifiable Grid Services	CPUC Use Cases Incl. in Analysis		
		Bulk-"Peaker Sub"	Ancillary Services	
Enorgy	Electric Supply Capacity	X		X
Energy	Electric Energy Time-Shift	Χ		X
	Frequency Regulation	X	X	X
A/S	Spinning Reserve	X		X
	Non-Spinning Reserve	X		X
Transmission	Transmission Upgrade Deferral			
1141151111551011	Transmission Voltage Support			
Distribution	Distribution Upgrade Deferral			X
Distribution	Distribution Voltage Support			
	Power Quality			
Customer	Power Reliability			
	Retail Demand Charge Mgmt			
	Retail Energy Time-Shift			

Bulk Storage Peaker Substitution


Category	Quantifiable Grid Services	CPUC I	Use Cases Incl. in Analysis
		Bulk-"Peaker Sub"	
Enorgy	Electric Supply Capacity	X	1.Electric Sup
Energy	Electric Energy Time-Shift	X	Capacity
	Frequency Regulation	X	. ,
A/S	Spinning Reserve	X	2.Electric Ene
	Non-Spinning Reserve	X	Time Shift
Transmission	Transmission Upgrade Deferral		
Iransmission	Transmission Voltage Support		3.Frequency
Distribution	Distribution Upgrade Deferral		Regulation
Distribution	Distribution Voltage Support		
	Power Quality		4.Spinning Re
Customer	Power Reliability		E Non Chinnir
	Retail Demand Charge Mgmt		5.Non-Spinnir
	Retail Energy Time-Shift		Reserve

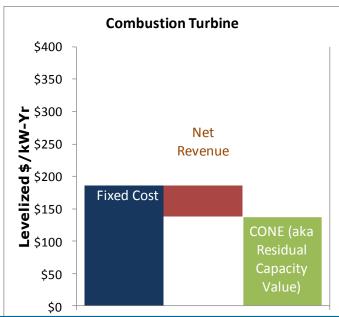
- 1. Electric Supply **Capacity**
- 2. Electric Energy **Time Shift**
- 3.Frequency Regulation
- 4. Spinning Reserve
- 5.Non-Spinning Reserve




Storage Dispatch Modeling Approach for Peaker Substitution Use Case

 Reserve top 20 CAISO load hours per month for providing energy to earn system capacity value

 Co-optimize for profitability between energy and ancillary services (reg up, reg down, spin, non-spin)

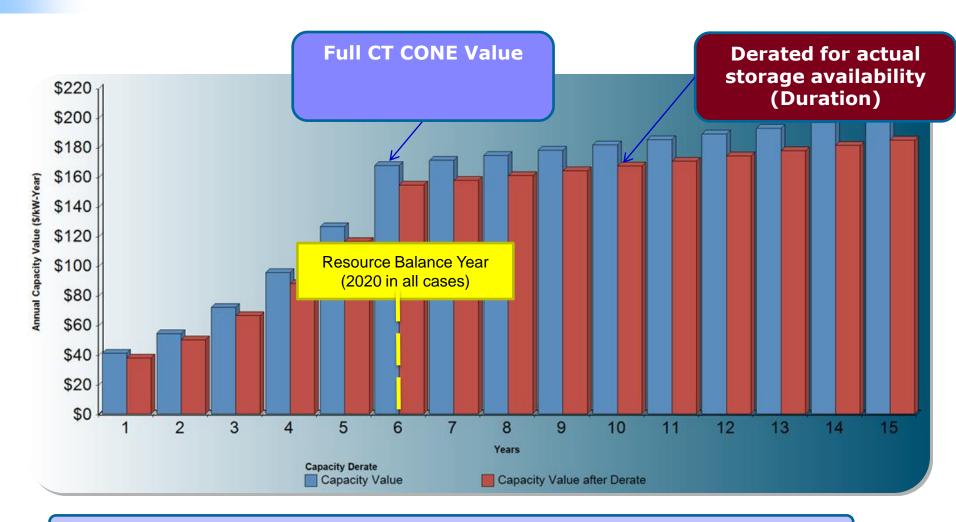


Before calculating storage cost effectiveness...

- We need a method for determining system capacity value
- System capacity value is determined by a metric called Cost of New Entry (CONE)

 CONE is the minimum required system capacity annual payment to build a new marginal combustion turbine(CT) – in California, LM6000 w/ SPRINT

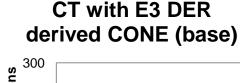
- CONE was calculated two ways:
 - E3 DER Avoided Cost Calculator* (base)
 - ESVT Residual capacity value calc



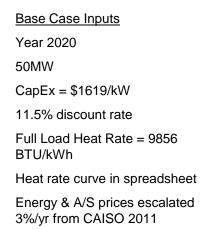
CONE=Fixed Cost - Energy and AS Revenue

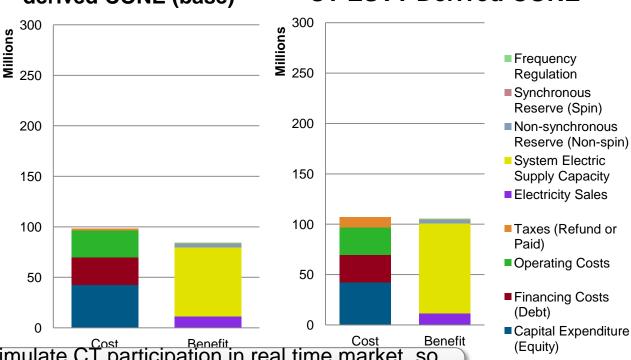
^{*} http://www.ethree.com/documents/DERAvoidedCostModel_v3_9_2011 v4d.xlsm

System Capacity Revenue for Storage



CONE = \$155/kW-yr (Derived from E3 DER avoided cost model)




Deriving and Comparing CONE values for System Capacity Value

	E3 DER CONE Value	ESVT-Derived CONE
CONE Value (Residual Capacity Value)	\$155/kW-yr	\$203/kW-yr

CT ESVT Derived CONE

ESVT does not currently simulate CT participation in real time market, so

ESVT CONE is likely somewhat inflated.

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Bulk – Peaker Substitution Use Case Base Case Assumptions Provided by CPUC

Key Global and System / Market Assumptions

Category	Input	2020	2015
	Financial Model	IPP	IPP
	Discount Rate	11.47%	11.47%
Global	Inflation Rate	2%	2%
	Fed Taxes	35%	35%
	State Taxes	8.84%	8.84%
	Base Year Reference	CAISO 2011	CAISO 2011
	Real Fuel Escalation Rate	2%	2%
	Energy & A/S Escalation Rate	3%	3%
	Yr 1 capacity value (\$/kW-yr)	\$155	\$72
	CONE value (\$/kW-yr)	\$155	\$155
System / Market	Resource Balance Year	2020	2020
	Mean Energy Price (\$/MWh)	39.96	34.47
	Mean Reg Up Price (\$/MW-hr)	12.01	10.36
	Mean Reg Down price (\$/MW-hr)	9.04	7.80
	Mean Spin price (\$/MW-hr)	9.43	8.13
	Mean Non-Spin price (\$/MW-hr)	1.28	1.11

Bulk – Peaker Substitution Base Case Assumptions Provided by CPUC

 Key technology cost / performance assumptions – storage and conventional (CT)

Category	Input	2020			2015			
		Battery*	Flow Battery	PHS	AG CAES	CT**	Battery	Flow Battery
	Nameplate Capacity (MW)	50	50	300	100	50	50	50
	Nameplate Duration (hr)	2	4	. 8	8	-	2	4
	Capital Cost (\$/kWh) -Start Yr Nominal	528	443	166	211	-	603	775
	Capital Cost (\$/kW) - Start Yr Nominal	1056	1772	1325	1684	1619	1206	3100
	Project Life (yr)	20	20	100	35	20	20	17
	Roundtrip Efficiency	83%	75%	82.50%	-	-	83%	70%
	Variable O&M (\$/kWh)	0.00025	0.00025	0.001	0.003	0.004	0.00025	0.00025
Technology Cost /	Fixed O&M (\$/kW-yr)	15	15	7.5	5	17.4	15	15
Performance	Major Replacement Frequency	1	0	-	-	-	1	0
	Major Replacement Cost (\$/kWh)	250	-	-	-	-	250	-
	MACRS Depreciation Term (yr)	7	7	7	7	7	7	7
	Energy Charge Ratio (CAES)	-	-	-	0.7	-		-
	Full Capacity Heat Rate (CAES/CT)	-			3810	9387	-	-
	Heat Rate Curve (CAES/CT)	-	-	-	see wkst	see wkst		-
	Turbine Efficiency Curve (PHS)	-	-	see wkst	-	-		-
	Pump Efficiency (PHS)	-	-	see wkst	-	_	_	-

^{*} Battery based loosely on Li-ion is most common base case

^{**}CT based on LM6000 w/ SPRINT technology

Run 1: Peaker Substitution Result for Base Case with CPUC Inputs

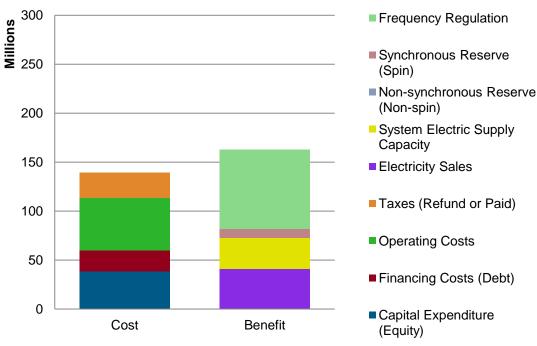
- Benefit/Cost Ratio = 1.17
- Breakeven Capital Cost: \$831/kWh (\$1662/kW) in 2013 inflation adjusted dollars

Base Case Inputs

Year 2020

50MW, 2hr (battery)

CapEx = \$1056/kW, \$528/kWh


1 Batt Replacement @ \$250/kWh

11.5% discount rate

83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011

2020 Base Case

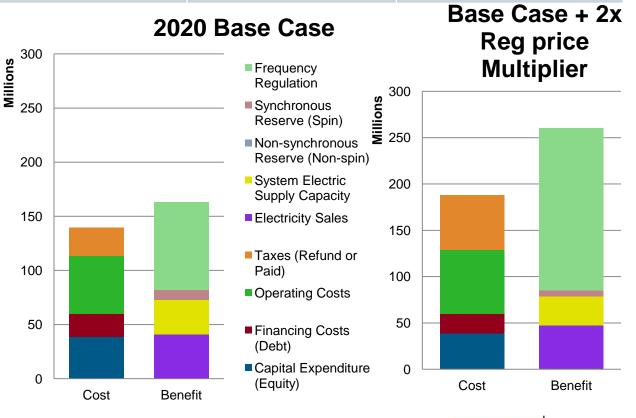
Sensitivity to Regulation Service Value (1 of 2) 1X Regulation Price vs. 2X Price

	Base Case	Base Case + 2x Reg
Breakeven Capital Cost in 2013 dollars	\$831/kWh (\$1662/kW)	\$1584 /kWh (\$3168/kW)

Base Case Inputs

Year 2020

50MW, 2hr (battery)


CapEx = \$1056/kW, \$528/kWh

1 Batt Replacement @ \$250/kWh

11.5% discount rate

83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011

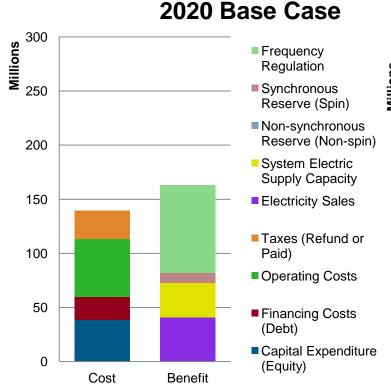
Sensitivity to Regulation Service Value (2 of 2) Base Regulation Value vs. No Regulation Value

	Base Case	Base Case w/o Regulation
Breakeven Capital Cost in 2013 dollars	\$831 /kWh (\$1662/kW)	\$423 /kWh (\$846/kW)

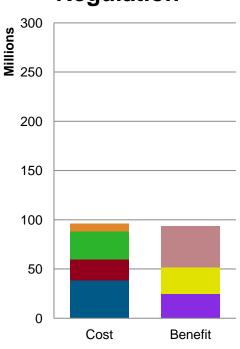
Base Case Inputs

Year 2020

50MW, 2hr (battery)


CapEx = \$1056/kW, \$528/kWh

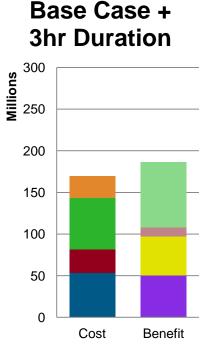
1 Batt Replacement @ \$250/kWh

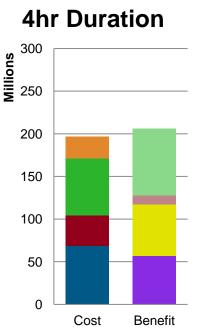

11.5% discount rate

83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011

Base Case w/o Regulation



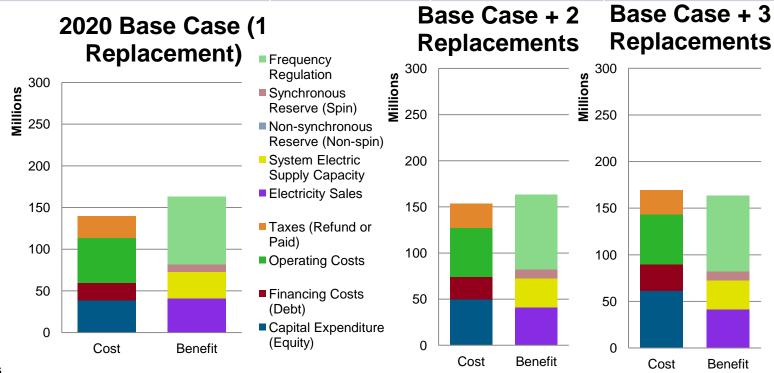


Sensitivity to Storage Duration Configuration Base Case (2hr) vs. 3hr vs. 4hr

	Base Case	Duration 3hr	Duration 4hr
Breakeven Capital Cost in 2013 dollars	\$831 /kWh	\$582 /kWh	\$454 /kWh
	(\$1662/kW)	(\$1746/kW)	(\$1816/kW)

2020 Base Case (2hr **Duration**) Frequency Regulation 300 ■ Synchronous Reserve (Spin) 250 ■ Non-synchronous Reserve (Non-spin) System Electric 200 Supply Capacity ■ Electricity Sales 150 Taxes (Refund or Paid) 100 Operating Costs 50 ■ Financing Costs (Debt) ■ Capital Expenditure 0 (Equity) Cost Benefit

Base Case +


Base Case Inputs

Year 2020; 50MW, 2hr (battery); CapEx = \$1056/kW, \$528/kWh; 1 Batt Replacement @ \$250/kWh; 11.5% discount rate; 83% RT Efficiency; Energy & A/S prices escalated 3%/yr from CAISO 2011

Sensitivity to Battery Replacement Frequency*

•	Base Case (1X)		Base + 3X replace
Breakeven Capital Cost in 2013 dollar	\$831 /kWh	\$582 /kWh	\$454 /kWh
	(\$1662/kW)	(\$1164/kW)	(\$908/kW)

Base Case Inputs

Year 2020; 50MW, 2hr (battery); CapEx = \$1056/kW, \$528/kWh; Batt Replacements @ \$250/kWh; Battery replacements equally spaced over 20 yr life; 11.5% discount rate; 83% RT Efficiency; Energy & A/S prices escalated 3%/yr from CAISO 2011

Sensitivity to Project Start Year: 2020 vs. 2015

	Base Case (2020 start)	Base Case (2015 start)
Breakeven Capital Cost in 2013 dollars	\$831/kWh (\$1662/kW)	\$749/kWh (\$1498/kW)

2020 Base Case

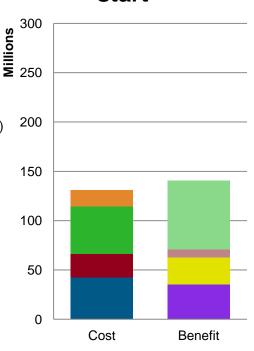
Base Case w/ 2015 start

Base Case Inputs

Year 2020

50MW, 2hr (battery)

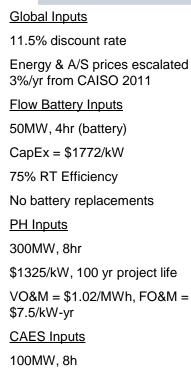
CapEx = \$1056/kW, \$528/kWh

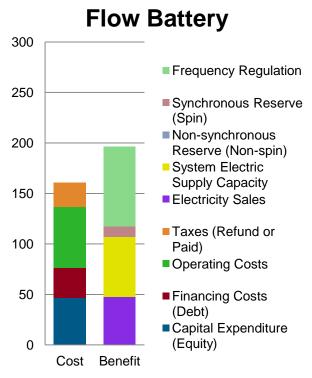

1 Batt Replacement @ \$250/kWh

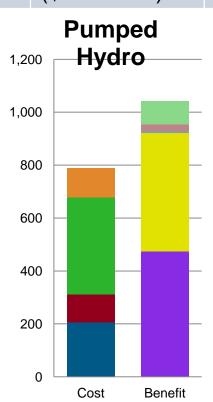
11.5% discount rate

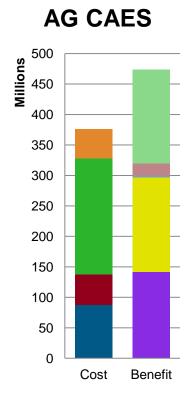
83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011

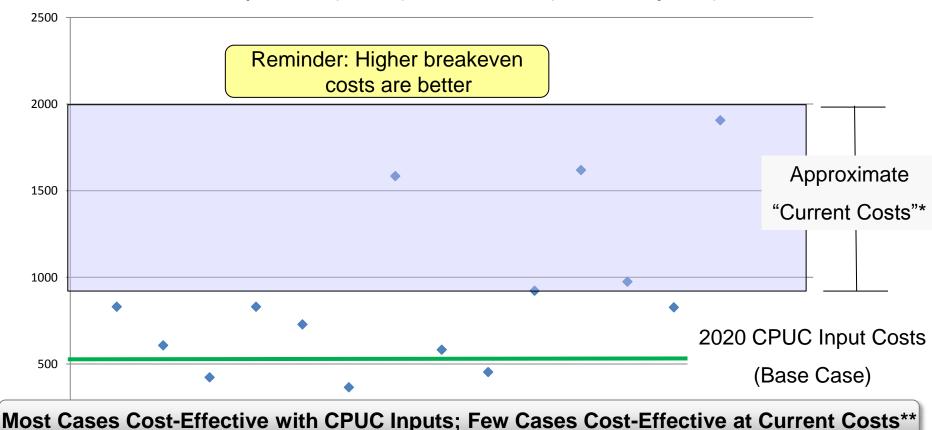







Other Technology Comparison (Flow Battery, CAES, Pumped Hydro)

	Flow Battery	Pumped Hydro	Abv Ground CAES
Breakeven Capital Cost in	\$664/kWh	\$214/kWh	\$224/kWh
2013 dollars	(\$2657/kW)	(\$1713/kW)	(\$1790/kW)

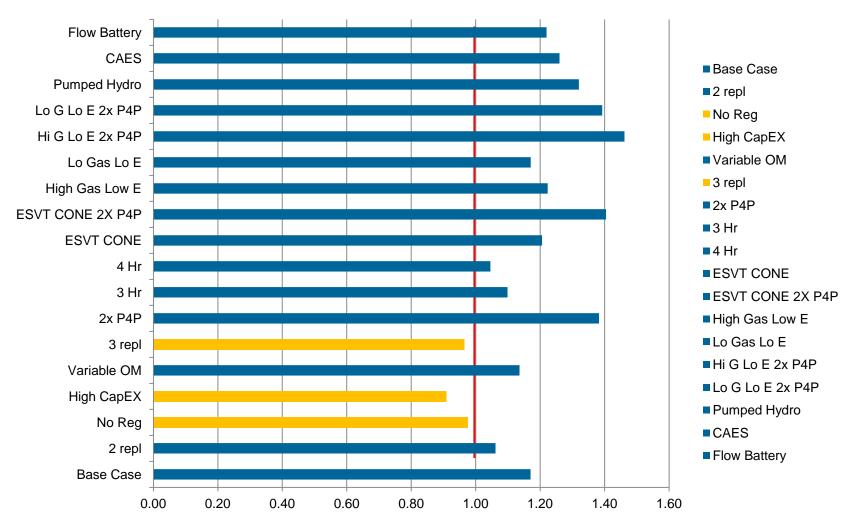

Energy charge ratio = 0.7

\$1584/kW, 35 yr life

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Overview of Bulk / Peaker Results in ESVT - Breakeven Capital Costs (CPUC Inputs)

Breakeven Capital Cost (\$/kWh) in 2013 Dollars (inflation-adjusted)



^{*} Based on 2011 EPRI Storage Cost Survey and other sources

^{** &}quot;Current costs" applicable to 2-4hr battery, not other technologies contained

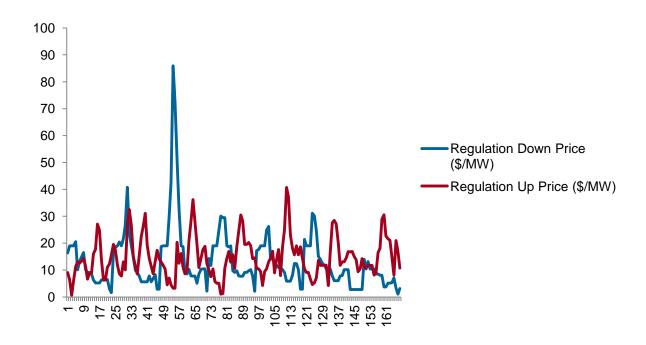
Summary of B/C ratio results for Bulk Storage (Peaker Sub) – CPUC Inputs / Costs

B/C Ratio

Use Case #2: A/S (Regulation)—only Inputs & Results

Reminder – 3 CPUC Use Cases

Category	Quantifiable Grid Services	CPUC Use Cases Incl. in Analysis		
		Bulk-"Peaker Sub"	Ancillary Services	
Enorgy	Electric Supply Capacity	X		X
Energy	Electric Energy Time-Shift	Χ		X
	Frequency Regulation	X	X	X
A/S	Spinning Reserve	X		X
	Non-Spinning Reserve	X		X
Transmission	Transmission Upgrade Deferral			
1141151111551011	Transmission Voltage Support			
Distribution	Distribution Upgrade Deferral			X
Distribution	Distribution Voltage Support			
	Power Quality			
Customer	Power Reliability			
	Retail Demand Charge Mgmt			
	Retail Energy Time-Shift			


A/S (Regulation)-Only

Category Quantifiable Grid Service		CPUC Use Cases Incl. in An	alysis
		Ancillary Services	
Energy	Electric Supply Capacity		
	Electric Energy Time-Shift		
	Frequency Regulation	X	
A/S	Spinning Reserve		
	Non-Spinning Reserve		1.Frequ
Transmission	Transmission Upgrade Deferral		Regula
	Transmission Voltage Support		333
Distribution	Distribution Upgrade Deferral		
	Distribution Voltage Support		
Customer	Power Quality		
	Power Reliability		
	Retail Demand Charge Mgmt		
	Retail Energy Time-Shift		

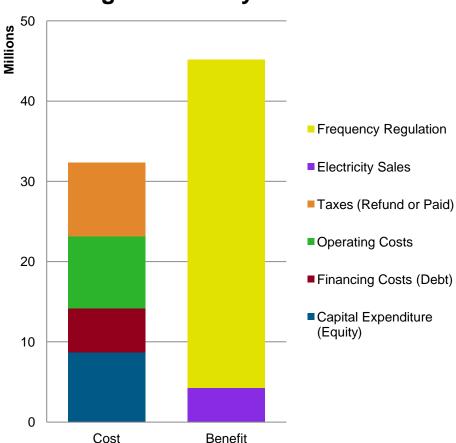
Storage Dispatch Modeling Approach for Regulation Only Use Case

- Optimize for profitability between regulation up, regulation down, and no action; manage storage state-of-charge
- Account for associated charging / discharging costs and revenues

A/S (Regulation)-only Base Case Assumptions Provided by CPUC (1 case)

Key Global and System / Market Assumptions

Category	Input	2020
	Financial Model	IPP
	Discount Rate	11.47%
Global	Inflation Rate	2%
	Fed Taxes	35%
	State Taxes	8.84%
	Base Year Reference	CAISO 2011
	Real Fuel Escalation Rate	2%
 System / Market	Energy & A/S Escalation Rate	3%
System / Warket	Mean Energy Price (\$/MWh)	39.96
	Mean Reg Up Price (\$/MW-hr)	12.01
	Mean Reg Down Price (\$/MW-hr)	9.04


A/S (Regulation)-only Base Case Assumptions Provided by CPUC (1 case)

Key technology cost / performance assumptions

Category	Input	2020
		Battery
	Nameplate Capacity (MW)	20
	Nameplate Duration (hr)	0.25
	Capital Cost (\$/kWh) -Start Yr Nominal	3112
	Capital Cost (\$/kW) - Start Yr Nominal	778
	Project Life (yr)	20
Technology Cost / Performance	Roundtrip Efficiency	83%
	Variable O&M (\$/kWh)	0.00025
	Fixed O&M (\$/kW-yr)	15
	Major Replacement Frequency	1
	Major Replacement Cost (\$/kWh)	250
	MACRS Depreciation Term (yr)	7

Regulation Only Result (2x Regulation Price Multiplier)

B/C Ratio	1.40
Breakeven Capital Cost in 2013 dollars	\$1678/kW (\$6712/kWh)

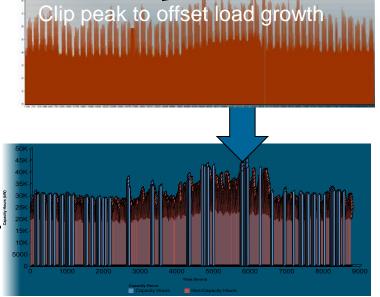
Discussion Break / Lunch

Use Case #3: Distribution Storage at Substation Inputs & Results

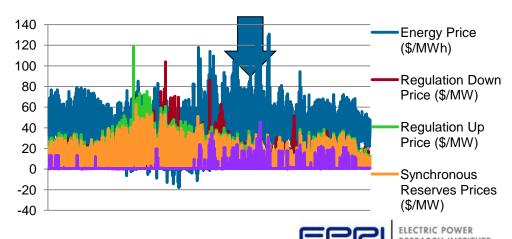
Reminder – 3 CPUC Use Cases

Category	Quantifiable Grid Services	CPUC Use Cases Incl. in Analysis		nalysis
		Bulk-"Peaker Sub"	Ancillary Services	
Enorgy	Electric Supply Capacity	X		Х
Energy	Electric Energy Time-Shift	X		X
	Frequency Regulation	X	X	X
A/S	Spinning Reserve	X		X
	Non-Spinning Reserve	X		X
Tuo no suo i soi o n	Transmission Upgrade Deferral			
Transmission	Transmission Voltage Support			
Distribution	Distribution Upgrade Deferral			X
Distribution	Distribution Voltage Support			
	Power Quality			
Customer	Power Reliability			
Customer	Retail Demand Charge Mgmt			
	Retail Energy Time-Shift			

Distribution Storage at Substation


Category	Quantifiable Grid Services	CPUC Use Cases Incl. in Analysis	
			Dist. Sub. Storage
En oray	Electric Supply Capacity		X
Energy	Electric Energy Time-Shift	1.Electric Supply Capacity	X
	Frequency Regulation	2.Electric Energy Time Shift	X
A/S	Spinning Reserve	2 Fraguency Population	X
	Non-Spinning Reserve	3.Frequency Regulation	X
Transmission	Transmission Upgrade Deferral	4.Spinning Reserve	
1141131111331011	Transmission Voltage Support	5.Non-Spinning Reserve	
Distribution	Distribution Upgrade Deferral		X
Distribution	Distribution Voltage Support	6. Distribution Upgrade	
	Power Quality	Deferral	
Customer	Power Reliability		
	Retail Demand Charge Mgmt		
	Retail Energy Time-Shift		

Storage Dispatch Modeling Approach for Distribution Storage at Substation Use Case


 Top priority: Peak shave annual peak distribution load to offset load growth and defer upgrade investment for years

 Second priority: Reserve Top 20 CAISO load hours per month for providing energy

 Co-optimize for profitability between energy and ancillary services (reg up, reg down, spin, non-spin)

Distributed Storage at Substation Base Case Assumptions Provided by CPUC

Key Global and System / Market Assumptions

Category	Input	2020	2015
	Financial Model	IPP	IPP
	Discount Rate	11.47%	11.47%
Global	Inflation Rate	2%	2%
	Fed Taxes	35%	35%
	State Taxes	8.84%	8.84%
	Base Year Reference	CAISO 2011	CAISO 2011
	Real Fuel Escalation Rate	2%	2%
	Energy & A/S Escalation Rate	3%	3%
	Cost of Distribution Upgrade (\$/kW)	\$309	\$279
	Feeder Type	C&I	C&I
	Load Growth Rate	2%	2%
System / Market	Load Growth Rate Yr 1 capacity value (\$/kW-yr)	2% \$155	
System / Market			\$72
System / Market	Yr 1 capacity value (\$/kW-yr)	\$155	\$72 \$155
System / Market	Yr 1 capacity value (\$/kW-yr) CONE value (\$/kW-yr)	\$155 \$155	\$72 \$155 2020
System / Market	Yr 1 capacity value (\$/kW-yr) CONE value (\$/kW-yr) Resource Balance Year	\$155 \$155 2020	\$72 \$155 2020 34.47
System / Market	Yr 1 capacity value (\$/kW-yr) CONE value (\$/kW-yr) Resource Balance Year Mean Energy Price (\$/MWh)	\$155 \$155 2020 39.96	\$72 \$155 2020 34.47 10.36
System / Market	Yr 1 capacity value (\$/kW-yr) CONE value (\$/kW-yr) Resource Balance Year Mean Energy Price (\$/MWh) Mean Reg Up Price (\$/MW-hr)	\$155 \$155 2020 39.96 12.01	\$72 \$155 2020 34.47 10.36 7.80

Distributed Storage at Substation Base Case Assumptions Provided by CPUC

Key technology cost / performance assumptions

Category	Input	2020		2015
		Battery (4hr)	Battery (4hr)	Flow Battery (4hr)
	Nameplate Capacity (MW)	1	1	1
	Nameplate Duration (hr)	4	4	4
	Capital Cost (\$/kWh) -Start Yr Nominal	437	500	775
	Capital Cost (\$/kW) - Start Yr Nominal	1750	2000	3100
	Project Life (yr)	20	20	17
Technology Cost / Performance	Roundtrip Efficiency	83%	83%	70%
	Variable O&M (\$/kWh)	0.00025	0.00025	0.00025
	Fixed O&M (\$/kW-yr)	15	15	15
	Major Replacement Frequency	1	1	0
	Major Replacement Cost (\$/kWh)	250	250	-
	MACRS Depreciation Term (yr)	7	7	7

Distribution Storage at Substation Cost-Effectiveness Result for Base Case

- Benefit/Cost Ratio = 1.19
- Breakeven Capital Cost: \$851/kWh (\$3403/kW) in 2013 inflation adjusted dollars

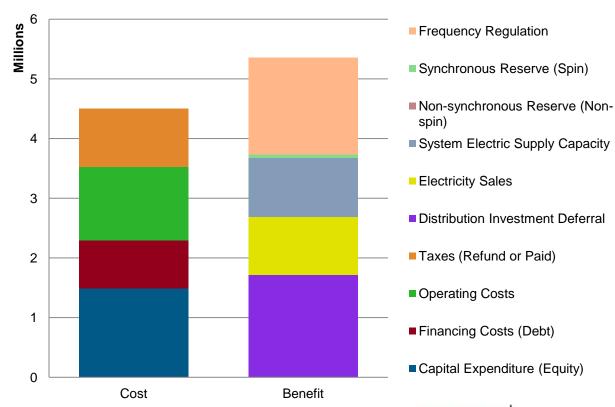
Base Case Inputs

Year 2015

1MW, 4hr (battery)

CapEx = \$2000/kW, \$500/kWh

11.5% discount rate


83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011

\$279/kW upgrade cost

2% load growth rate

2015 Distributed Case

Distribution Base Case: Project Start Year 2015 vs. 2020

	Base Case (2015)	Base Case (2020)
Breakeven Capital Cost in 2013 dollars	\$851/kWh (\$3403/kW)	\$914 /kWh (\$3656/kW)

Base Case Start Base Case Inputs 2015 Distributed Case at 2020 1MW, 4hr (battery) Frequency Regulation Synchronous Reserve (Spin) Millions CapEx = \$2000/kW, \$500/kWh11.5% discount rate 83% RT Efficiency ■Non-synchronous Reserve Energy & A/S prices escalated 5 (Non-spin) 5 3%/yr from CAISO 2011 System Electric Supply Capacity \$279/kW dist. upgrade cost 4 Electricity Sales 2% load growth rate Distribution Investment 2020 Case Inputs 3 Deferral CapEx = \$1750/kW, \$438/kWhTaxes (Refund or Paid) 2 Same battery performance as 2 ■Operating Costs base \$309/kW upgrade cost ■Financing Costs (Debt) 2% load growth rate ■Capital Expenditure (Equity) Same market inputs as 2020 Cost Benefit peaker use case base Cost Benefit

Sensitivity to Distribution Base Case - Duration 4hr vs. 2hr

	Base Case (4 Hour)	Base Case (2 Hour)
Breakeven Capital Cost in 2013	\$851/kWh	\$1490 /kWh
dollars	(\$3403/kW)	(\$5960/kW)

Base Case Inputs

1MW, 4hr (battery)

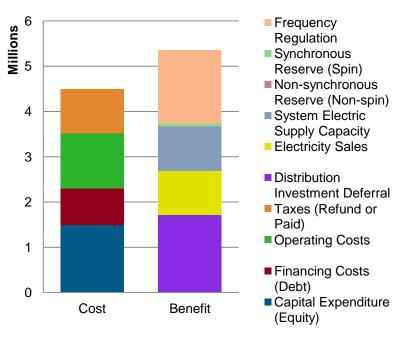
CapEx = \$2000/kW, \$500/kWh

11.5% discount rate

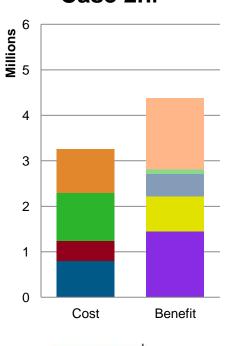
83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011

\$279/kW upgrade cost


2% load growth rate

2 hr Inputs


1MW, 2hr

CapEx = \$1100/kW, \$550/kWh

2015 Base Case

2015 Distributed Case 2hr

Sensitivity to Regulation Price 2X multiplier

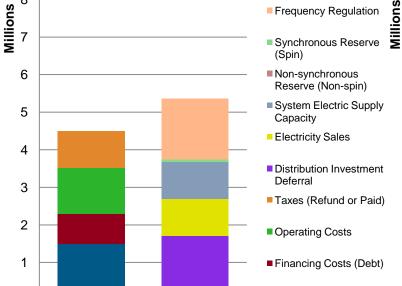
	Base Case	Base Case (2x Reg)
Breakeven Capital Cost in 2013 dollars	\$851/kWh (\$3403/kW)	\$1307 /kWh (\$5528/kW)

Base Case Inputs

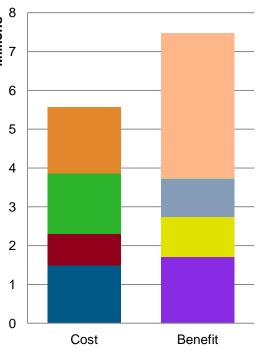
1MW, 4hr (battery)

CapEx = \$2000/kW, \$500/kWh

11.5% discount rate


83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011


\$279/kW upgrade cost

2% load growth rate

2015 Base Case

Base Case + 2x Reg

Benefit

■ Capital Expenditure

(Equity)

0

Cost

Sensitivity Distribution Load Growth: 2% vs. 4%

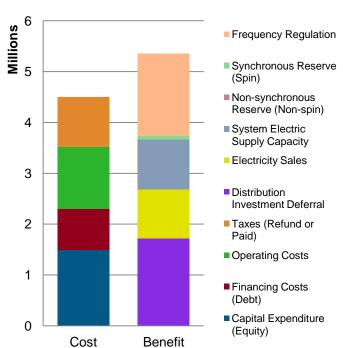
	Base Case (2%)	Base Case (4%)
Breakeven Capital Cost in 2013 dollars	\$851/kWh (\$3404/kW)	\$619 /kWh (\$2476/kW)

2015 Base Case

Base Case Inputs

1MW, 4hr (battery)

CapEx = \$2000/kW, \$500/kWh


11.5% discount rate

83% RT Efficiency


Energy & A/S prices escalated 3%/yr from CAISO 2011

\$279/kW upgrade cost

2% load growth rate

Base Case with High Load Growth Rate 4%

Storage Comparison: Battery (Base) vs. Flow Battery

	Base Case	Base Case w/ Flow Battery – 4h
Breakeven Capital Cost in 2013 dollars	\$851/kWh (\$3403/kW)	\$1000 /kWh (\$4000/kW)

Base Case Inputs

1MW, 4hr (battery)

CapEx = \$2000/kW, \$500/kWh

11.5% discount rate

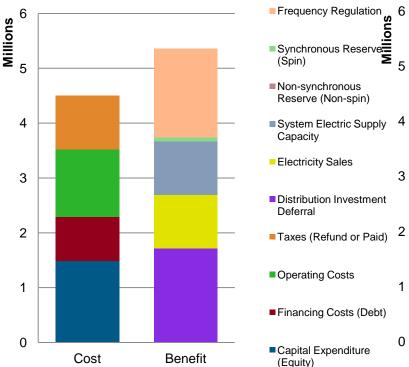
83% RT Efficiency

Energy & A/S prices escalated 3%/yr from CAISO 2011

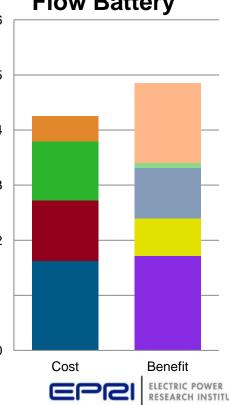
\$279/kW upgrade cost

2% load growth rate

Flow Battery Inputs

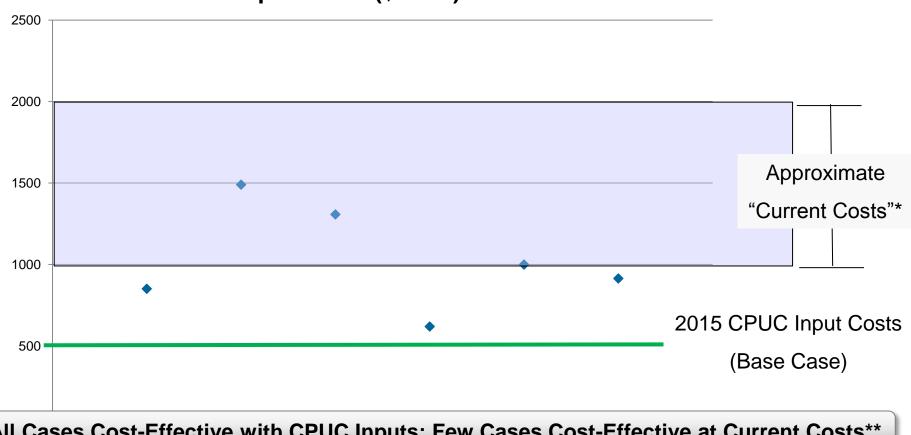

1MW, 4hr

17 yr project life


CapEx = \$3100/kW, \$775/kWh

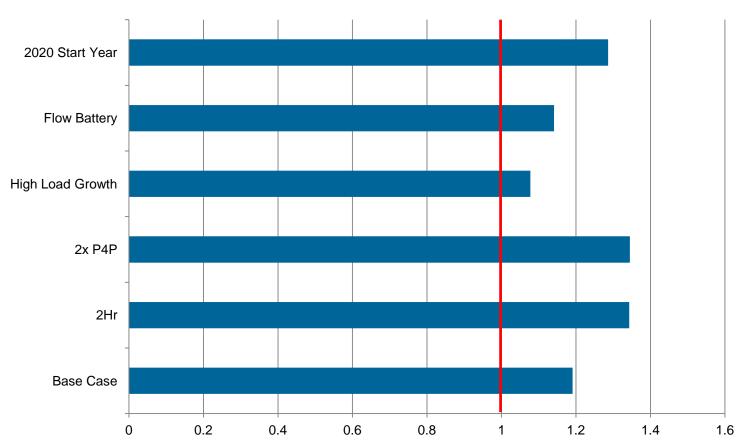
No replacements

2015 Base Case



Base Case with Flow Battery

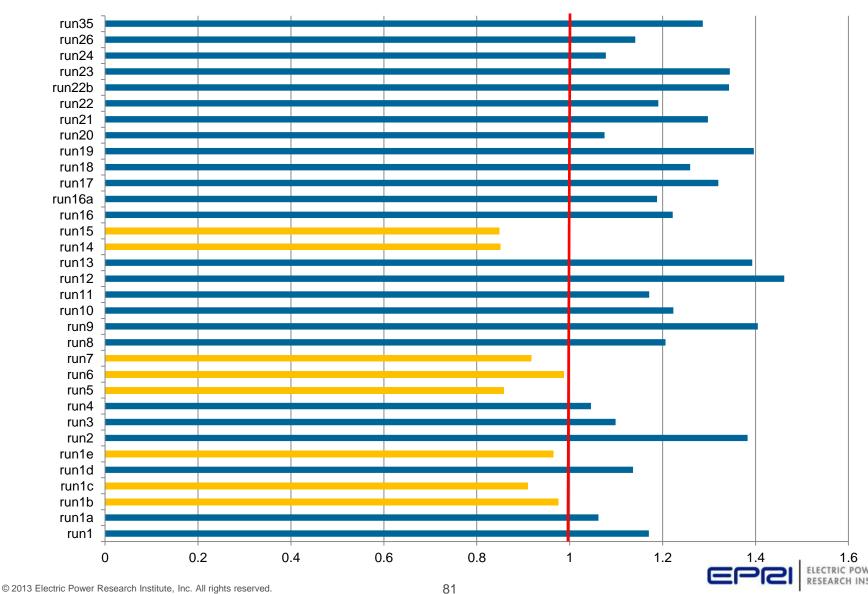
Overview of Distribution Results: Breakeven **Capital Costs**


All Cases Cost-Effective with CPUC Inputs; Few Cases Cost-Effective at Current Costs**

^{*} Based on 2011 EPRI Storage Cost Survey and other sources

^{** &}quot;Current costs" applicable to 2-4hr battery, not other technologies contained

Overview of Distribution Case: Benefit-Cost Ratio with CPUC Inputs


B/C Ratio For Distributed Use Case

Conclusions & Next Steps

Overview of all Benefit-to-Cost Ratios

B/C Ratio

Overview of findings

- Key findings from modeling analysis
 - Under provided assumptions, no clear conclusions between cost-effectiveness of different storage tech
 - Shorter duration typically allows for higher breakeven costs and improved benefit-to-cost ratios
 - Regulation is valuable for storage and price multiplier (pay-for-performance) drives battery storage profitability significantly
 - System capacity and T&D investment deferral are high value services
 - Higher Energy & A/S price escalation assumptions drive higher values in storage

Reminder: Results provided are valid only under stated CPUC assumptions.

Conclusions

- In this analysis, ESVT calculated that storage is costeffective under most of the scenarios defined by the CPUC
- Storage still faces significant challenges in terms of integration and deployment in the field
- Cost targets for storage defined in these scenarios have yet to be achieved

Reminder: Results provided are valid only under stated CPUC assumptions.

Next Steps – Comments and Reporting

- We would love to hear your comments and feedback to this analysis
- Intend to produce a publicly available EPRI report in the June timeframe to more formally present the results of this analysis
 - Opportunity to incorporate FAQ's from stakeholders and clarifications
- Analysis is still at an early stage! Case runs were completed in a short amount of time. More analysis pending.

Thank you!

- Active participation from CPUC, CESA, PG&E, SCE, and SDG&E to support our input clarification questions and format inputs in a way that resulted in only a small number of miscommunications
 - Special thanks to Giovanni Damato of CESA for managing the input template
- Great feedback on important tool outputs and formats that will be incorporated into future versions of the ESVT.

Together...Shaping the Future of Electricity